

HIGH-CURRENT ANALYSIS MAGNET

- A 90° Bending Magnet for High-Current Applications-

This analysis magnet is a double focussing dipole magnet designed to bend ion beams by 90° for charge-to-mass ratio analysis of the ion beam components. The compact design is tailored for high-current medium-emittance beams such as mA currents from high-power electron cyclotron resonance (ECR) ion sources.

In detail, the vacuum chamber of the magnet has a minimal inner width of $6\,\mathrm{cm}$ by $6\,\mathrm{cm}$ allowing for broad beams to pass without losses. The ion travel distance inside the magnet was minimized by using a magnet bending radius of only $250\,\mathrm{mm}$ in order to keep space charge effects small but still achieve a reasonable solution for mass-to-charge analysis.

The special design of the vacuum chamber includes water-cooled copper plates alongside the ideal ion trajectory where ion beam components are dumped which are separated from the ion species of choice bent at exactly 90°. The copper plates are designed to dissipate heat from ion beams of up to 300 W. They can easily be removed and exchanged when worn-out.

Scope of Delivery

- · magnet yoke
- water cooled coils incl. connectors for attachment of water hoses
- vacuum chamber incl. water cooled copper plates for high-current ion beam power absorption

OPTIONAL EQUIPMENT

- power supplies for operation of the magnet incl. tailored cables
- support stand for the magnet incl. space to build in the magnet power supplies
- electrical insulation to allow setting the vacuum chamber (as part of a customer beam line) on high voltage while magnet and power supplies remain on ground potential
- water flow meter to guarantee sufficient water cooling
- hall probe set to measure magnetic induction between the poles

TECHNICAL PARAMETERS

Magnet Parameters	
bending radius of charged particle beam	$250\mathrm{mm}$
bending angle α	90°
pole shoe angles at beam entry / exit β	33°
pole shoe gap	$80\mathrm{mm}$
shape of pole shoe edges at beam entry / exit	approx. Rogowsky
max. coil current for long-term operation	170 A
max. magnetic induction at ion trajectory	$500\mathrm{mT}$
effective magnetic length	394 mm
General Parameters	
dimensions (length x width x height)	$480\mathrm{mm} \ \mathrm{x} \ 530\mathrm{mm} \ \mathrm{x} \ 320\mathrm{mm}$
weight	$370 \mathrm{kg} (820 \mathrm{lbs})$
magnet yoke shape	H-type
coil material	water cooled hollow conductor
number of turns	180 (2 coils, 90 turns each)
beam dump elements	water cooled copper plates
beamline flanges	typically DN 100 CF, other flange types available
beam dump insertion flanges	DN 63 CF
alignment windows	DN 35 CF
Infrastructural Requirements	
vacuum conditions for operation	from $1 \cdot 10^{-10} \mathrm{mbar}$ up to atmospheric pressure
magnet and beam dump cooling type	water cooling, 1.5 l / min at 3 bar each
proposed power supply	$60\mathrm{V}$ / $200\mathrm{A}$

CONTACT

Headquarters Großröhrsdorf

Dreebit GmbH Dr. Daniel Kost Southwallstr. 5 01900 Großröhrsdorf, Germany

Phone: +49-35952-420-236 Cell: +49-174-2610-366 E-Mail: ibt.sales@dreebit.com

