

HIGH-CURRENT FARADAY CUP - A WATER COOLED FARADAY CUP FOR HIGH-CURRENT APPLICATIONS-

The High-Current Faraday Cup is a device for measuring high ion beam currents. The setup contains a metal back plate which is electrically insulated towards the housing but connected to a water cooling system by a thermally conductive insulator. Thus, heating power from an incident ion beam of up to $1.5 \,\mathrm{kW}$ can be dissipated while measuring an electrical current. Furthermore, the Faraday cup features a removable aperture plate as well as a suppressor electrode for suppression of secondary electrons emitted from the cup surfaces at ion impact.

The Faraday cup is mounted on a pneumatic linear push / pull positioner on a DN 160 CF flange. The up and down position is indicated by two relay contacts. The standard travel length between both

positions is 100 mm which can be adjusted to the requirements of the customer if necessary. The cup is suitable for ultra high vacuum conditions down to $1\cdot 10^{-10}\,\rm mbar.$

SCOPE OF DELIVERY

• High-Current Faraday Cup readily assembled and mounted onto a DN 160 CF flange incl. electrical feedthroughs and pneumatic linear push / pull positioner

Optional Equipment

- vacuum chamber
- picoampere meter or electrometer for measurement of charged particle current or pulses
- control and measurement software

TECHNICAL PARAMETERS

Faraday Cup Parameters	
aperture diameter	$40\mathrm{mm}$ or customer-specific
travel distance	$100\mathrm{mm}$ or customer-specific
recommended suppressor voltage	$200\mathrm{V}$
max. beam power	$1.5\mathrm{kW}$
General Parameters	
height above lower flange edge	414 mm
distance lower flange edge to beam center	$353\mathrm{mm}$
support flange	DN 160 CF, other flange types available
weight	18 kg (40 lbs)
current signal	BNC connector
travel end positions	5-pole M12 connector, two relay contacts
bake-out temperature	$150^{\circ}\mathrm{C}$
Infrastructural Requirements	
vacuum conditions during operation	from $1 \cdot 10^{-10} \mathrm{mbar}$ up to atmospheric pressure
pneumatic push / pull positioner	dry air, 7 bar
cooling water	1.5 l / min at 3 bar

Contact

Headquarters Großröhrsdorf Dreebit GmbH Dr. Daniel Kost Southwallstr. 5 01900 Großröhrsdorf, Germany

03/2020 www.dreebit-ibt.com Phone: +49-35952-420-236 Cell: +49-174-2610-366 E-Mail: ibt.sales@dreebit.com

